SCFE: Report 1 (First Presentation)

A

Matthieu Stombellini
Mathieu Rivier

Frangois Soulier
Rakhmatullo Rashidov

salamanders' lab

e

Contents

1 Introduction

1.1 Project subject remindero
2 Book of Specifications follow-up

3 Task progression

3.1 Core UL o
3.2 Navigation modes Lo
33 Filel/O
3.4 Userinput
3.5 Tool & OS integration
3.6 Website
3.7 Documentation L

4 Intentions for the second defense

4.1 Current stateo

4.2 Goal
5 Personal appreciation

5.1 Matthieu Stombellinio

5.2 Mathieu Rivier

5.3 Francois Souliero

5.4 Rakhmatullo Rashidov

6 Conclusion

7 Appendix

13
13
13

15
15
15
16
16

17

18

1 Introduction

In this report, you will find details on the progress that has been made between
the validation of the book of specifications for our project and the first defense.
It provides details on the solutions that have been implemented and what
should be done for the second defense.

One of the main goals of this first period was to get all of the members
of the team comfortable with relatively new tools, as well as to create a solid
basis for the project we will use extensively to build the application itself.

Before reading this document, and especially the task progression part, do
note there are two Mat(t)hieus involved in this project, Matthieu Stombellini
(with two T’s, who is also the project leader) and Mathieu Rivier (with only
one T).

1.1 Project subject reminder

Salamanders’ Console File Explorer, or SCFE for short, aims to be a file
explorer in the console that has the following goals:

o Usefulness, providing helpful information and adding something to the
table when compared to regular file explorers,

o Beginner-friendliness, so that everyone has a chance of using the tool
with all of its features with relatively low level of knowledge, especially
when compared to regular CLI workflows,

o Power-user friendliness, so that more advanced users can get work done
with SCFE,

» Approachable, by which we mean not in-your-face impressive but not
letting you in without any clue of what you are supposed to do,

« Stability, as bugs are just an annoyance that no one appreciates, we will
attempt to reduce them as much as possible.

It is built in C# using the .NET Core SDK, and, while its primarily targeted
platform is Windows, it aims to be cross-platform. This decision was made
both because it would increase the usefulness of the tool and because it is a
necessity, as half of the members of our team use Mac computers.

The team behind this project is known as Salamanders’ Lab, and is made
of four motivated students: Matthieu Stombellini (project leader), Mathieu
Rivier, Francois Soulier and Rakhmatullo Rashidov.

2 Book of Specifications follow-up

All the elements of the Book of Specifications were respected, and two of the
technical uncertainties (such as which libraries we were going to use) have been
solved, unless we see a particular need for more efficient replacements — which
would be surprising, but we cannot realistically rule that out.

o For the Core UI, we created a library from the ground up (which we
named Viu and will be detailed throughout this report). This allows us
to have complete control over what is displayed and we can customize our
interfaces exactly the way we want. The library itself is an integral part
of our project but does not depend on other components, meaning that
it can be entirely separated from our project and it will still work. This
re-usability aspect makes Viu a perfect candidate for a future open-source
release.

o For file manipulations, the basic classes provided by .NET have been
more than enough up to this point in the project’s development, although
we did end up creating a wrapper around these classes, as they were not
object-oriented representations. We might still use third-party libraries
as an option, but we do not think they will be necessary.

An additional library — which you might see in screenshots or in the prototype
— is being used, JetBrains.Annotations. It does not have any effect on what
is actually ran and its only role is to provide better code error predictions
(e.g. checking that no null values are given to parameters which require a
non-null value) when automated tests are done on our code.

We were able to respect all of the requirements we placed upon ourselves
throughout the first development of the project. We do not expect to have to
break the book of specifications in any way, shape or form for the foreseeable
future.

If we do need to break some of the features given in the Book of Specifications,
these would be minimal (e.g. key bindings which end up being too cumbersome
requiring simplification, mockup details. ..), or would otherwise go unnoticed
for the end user, as they would be internal decisions related to the organization
of the code base.

3 Task progression

The following part will present the progression of each task, also detailing who
was in charge of which task.

3.1 Core Ul

This task was the most important one for this first period, expecting 70% of
overall completion (from 0%). It is the basis of the entire application.

3.1.1 Done

In order to actually build a console application, we needed to have something
that could provide an easy way to display components, as well as handling
inputs exactly as we wanted. Unfortunately, almost all of the C# libraries we
could find lacked something crucial: it was often flexibility or cross-platform
compatibility issues which made libraries unusable in our project. For the
examples we thought about in our book of specifications:

o The gui.cs, while perfectly functional, was also extremely unclear, and
not flexible enough. We also had doubts about its cross-platform capabil-
ities.

o The CursesSharp library was just too low-level to be efficiently used, and
also added numerous concerns over the portability and cross-platform
capabilities of our code, the library requiring very specific bindings to
system libraries which differed depending on the platform (UNIX or
Windows).

This is why we decided to make our own library, based solely on the Console
API available in .NET.

This sub-project of SCFE is one of its most important components: in order
to match the flexibility and performance requirements we had in the Book of
Specifications, a lot of work had to be done to make it as smooth as possible.
The library was given a name, Viu, in order to separate it from code related
to the application itself. The idea was that SCFE depended on Viu, not the
other way around. While this separation might be seen as a step away from
the original goal of the project, it is very much the opposite: the way in which
we built Viu makes implementation of more high-level features of SCFE way
easier.

The Viu library is heavily inspired by the Swing toolkit in Java: the validate-
then-print workflow, component hierarchy and layout strategies resemble Swing,
but no code has been taken from it, and, when actually creating interfaces with
Viu, only some of the functions share characteristics with the Java system.

The main ideas developed throughout this first period were the creation
of visual components (labels, text fields, tables, buttons...) as well as the
implementation of various layout strategies. All of this was made harder by
the fact that the interface always has a varying size, and layout strategies had
to be flexible enough such that we would never have to touch low-level layout
code and manipulating positional coordinates directly when building SCFE
on top of Viu. Thanks to this and some light multithreading to catch when
the window is resized, components dynamically resize themselves as the space
around them changes (see figures 1 and 2 in the appendix).

Viu includes multiple “layout strategies” (see figure 3), allowing us to have
components shown exactly as we want them to be. All strategies are able to
smartly place components in them, always ensuring that they perfectly fit in,
dynamically wrapping their components if necessary. The strategies illustrated
in figure 3 are:

o The Border Strategy, laying out 4 components at each border and one in
the middle

o The Line Strategy, organizing components into a horizontal or vertical
line

o The Flow Strategy, putting components one after the other, wrapping
them like a text if necessary, although components are of course not
restricted to text only and can be any Viu component.

The most useful components were created, including simple texts (figures
1 and 2), text fields (which listen to user input), buttons and tables among
others. As with layout strategies, they can all dynamically resize themselves.
Tables can even resize each column individually with different widths for their
content (provided that it has different sizes at its disposal) in order to either
grow or shrink: an example of this in action can be seen in figures 4 and 5.

For extra flexibility, and if we wish to step away from the basic Console
API for something that allows us to have a more fine-grained control over the
output, Viu comes with its own abstraction layer above any console related
code. Components (almost) never call the Console API directly, only calling
our abstraction layer, for which the concrete implementation is given by a
simple pass-through to the basic Console API.

Viu components were mainly built by Matthieu, who had experience with
the Swing system (hence the resemblance), for the code that lays component
out, the general appearance of components and the overall hierarchy of the Viu
system. The user input side of Viu is described in its own task.

3.1.2 To Do

There is not much left to do for the low-level side for the interface. Adding a few
extra features here and there for individual components will be done as needed
when developing the remainder of the project, but this will not represent much.

Additional components also need to be coded, but will only be created
when necessary so as not to focus on useless elements we may never use in the
project, and the modularity of Viu makes this step fairly easy anyways.

For coding the actual application’s interface: thanks to the great flexibility
of the UI system, the work that is left to do is to actually use the components
for SCFE and link them to all of the other tasks.

Between the first and second defenses, this task will go from 70% to 90%.
This task is on schedule.

3.2 Navigation modes

This task was marginal for this first period, going from 0% to 20%, since it
heavily relies on low-level work done in Core Ul and User Input tasks.

3.2.1 Done

Viu only includes very few shortcuts (mostly arrow keys and enter key to
navigate around the UI). A few additional shortcuts were added, making use of
the Input Map and Action Map systems described in the User input section of
this document. For the Action Map, most of the work done was hooking up a
few shortcuts to action names in the NAV mode, as well as preparing the table
used in the prototype to receive constantly changing input bindings. This was
not fully implemented as it was unnecessary at this stage, but has proved itself
to be a fairly thorough test for the input system to see how flexible it would be.

The existing shortcuts are mapped to their corresponding action name, in
a dictionary, ready to be implemented into the main application once it gets
out of the simple prototype state. This task was realized by Francois.

3.2.2 To Do

This task will receive the most work between the first and second defense.
The goal here will be to fully implement hooks between shortcuts and actions
(i.e. complete the ActionMaps seen in the User Input task), as well as fully
implement the navigation mode switcher. This will be done once the prototype
becomes more functional, but should not require too much of an effort.

7

Between the first and second defenses, this task will go from 20% to 70%.
This task is on schedule.

3.3 FileI/O

This task was of fairly little important for this first period, going from 0% to
30%

3.3.1 Done

While file input and output is an essential part of SCFE, it was far from being
a priority for the first period. We planned to primarily focus on the basis of
what has become Viu, making everything else later.

As such, Frangois coded an object-oriented representation of the file system
entirely based on the various classes provided by .NET which, unfortunately,
were either only using static methods and strings, or did not have enough
features to satisfy our needs. Having our own implementation also means that
we will be able to copy paste files or even entire folders using a simple function
in the file representation.

In addition, the methods implemented in this task such as Copy or Move
use the System.IO classes, in such a way that the File class from SCFE can
represent either a file or a folder. That specific property was particularly
difficult to handle in the implementation, because each and every case had to
be taken into account, and thus imply a need for recognizing the kind of file
(folder or file) that was being dealt with.

To make it clearer, the implementation of the SCFE File class in-
cludes the call of System.I0 methods in System.I0.File, but also
System.I0.Directory since SCFE File can represent both files and directories
(but a path cannot represent both a file and a directory at the same time of
course). Moreover, some work on the path of a folder or a file has been realized
in order to determine the parent folder of the file. However, the implementation
of the class is not complete, as specified in the ‘To Do’ section below.

It is important to note that the functionalities of the File class are not used
to their full extent yet: it is only used to display the content of files. Indeed,
they will be used much more consequently by the second presentation.

Francois was responsible for the entirety of the task, with outside help from
Matthieu for fixing a few bugs and properly using .NET APIs.

3.3.2 To Do

This task will also see a significant increase in progression between the first
and second defense. Most of the work will be based on adding access to all of
the attributes of a file (creation date, modification date, type...), in a flexible
object-oriented way. Full copy and paste methods will also be added to the
interface, and file navigation will be fully functional at this point.

Furthermore, the functions will be reviewed in order to be thoroughly
optimized. In this respect, the safety checks present in the functions might be
modified. Also, the File class must provide the possibility of showing the size
of the file, and it must also provide a sorting option of the files in the display,
for instance a sorting by alphabetical order, by the size of the files, or by the
date of creation and modification of the files. The various tools to make these
features a possibility will be created before the second presentation.

Between the first and second defenses, this task will go from 30% to 70%.
This task is on schedule.

3.4 User input

This task was important for this first period, going from 0% to 40%.

3.4.1 Done

The main goal of this task for the first period was to provide interactivity for
Viu: reacting to key inputs and managing focus states of all components.

A focus system was added, which allows the user to navigate between the
various elements of the interface and throughout the component hierarchy using
arrow keys (or other custom key bindings). This was done through smart use
of C# interfaces on all components, which can declare the fact that they can
be focused and handle key presses by simply implementing an interface. The
focus system can be compared to the logic behind GUI applications which
allow them to determine which component to select next when pressing Tab or
Shit+Tab.

To create this focus system, we simply extended layout strategies to also
include logic that tell which component should be the next one to be focused
when going left, right, up or down.

Another aspect of the UserInput task was the InputMap/ActionMap system.
Once again inspired by the Swing system, this allows us to separate shortcuts
from actions. The idea is that InputMaps provide a binding between shortcuts
and action names, while ActionMaps provide a binding between the action

names and the actual action. This system provides a fantastic “buffer” layer
between what the user presses and what the program does. In a nutshell, the
InputMap links key presses to action names, and the ActionMap links the same
action names to the actual implemented actions (see figure 6). This is the exact
system that will be used for the Navigation Modes task to switch back and
forth between different shortcuts without fundamentally changing the actual
action themselves.

Finally, a few components which are entirely based on user interaction were
added, namely text fields and buttons. These were entirely custom built by
handling individual key presses, since we were not really able to rely on the
“regular” way of reading text from the console. Text fields provide a sizeable
implementation of shortcuts which are common in text editors in order to
simply make the text field component easier to use. Examples of such key
presses include the Delete key or Ctrl+Arrow shortcuts (to jump between words
instead of just between letters/symbols).

Heavy testing for this part was crucial to make sure that the input system
was robust.

Mathieu was responsible for most of the task, implementing the input
system (under Matthieu’s supervision in order to make it fit nicely into the
existing component hierarchy) with ActionMap and InputMaps as well as the
focus system (once again with help from Matthieu), and Rakhmatullo was in
charge of the “input reaction” part of a few components, including buttons
(e.g. performing a predetermined action when pressing a button).

3.4.2 To Do

Most of the work left to do for user input will end up being very important
after more work is done on every other task, in order to handle more complex
key shortcuts or components.

As such, this task will only receive minimum attention for the second period,
switching to a “maintenance mode” where the main focus will be fixing bugs,
adding user input related code to new components and adding a few small
extra shortcuts to the text fields.

Between the first and second defenses, this task will go from 40% to 50%.
This task is on schedule.

10

3.5 Tool & OS integration
3.5.1 Done

Nothing in particular was done for this task, as was planned (0%) in the book of
specifications, since this is a more advanced part of SCFE which has absolutely
no use if the basic application is not stable and functional.

3.5.2 To Do

Basic OS integration will be provided for the next period, with examples such as
identification of “symlinks” (on OS which feature them) or helpfully shortening
displayed directory paths (e.g. turning /home/myname/mydir/myfile.txt to
just ~/mydir/myfile.txt). Moreover, opening files is also a feature of the un-
derlying OS, which will be implemented and usable for the second presentation.
Integration of heavier tools like Git will come between the second defense and
the final presentation, or might even start before if we have enough time.

Between the first and second defenses, this task will go from 0% to 30%.
This task has not been started yet.

3.6 Website
3.6.1 Done

Not much for this task was done in particular, as was planned (0%) in the book
of specifications, since creating a website on a project that has just started
would have redirected our efforts to a time-wasting task.

Mathieu did gather some information and mockups on what could be done
in order to gain some time for the second presentation, but no website has been
published yet.

3.6.2 To Do

Mathieu will take care of creating the website for the next period and ensuring
content to it and that it is hosted properly. He and Rakhmatullo will be
responsible for pushing content to it, both when it comes to the regular content
expected from the website and the documentation.

We will explore various options for hosting the website during the next
period, as we have not chosen a particular one yet.

11

Between the first and second defenses, this task will go from 0% to 50%.
This task has not been started yet.

3.7 Documentation
3.7.1 Done

Some code documentation for Viu was done as we intend to publish it later
on, but most of the work that has been done for this part is simply collecting
intentions from the book of specifications to make them into a user-readable
format. This is done in Markdown at the moment, but will be published onto
the website later on.

The current documentation task has been progressing quite slowly, and we
hope to make it much more useful as soon as possible. Some research about
Markdown in general was done by Rakhmatullo to get some training on this
format.

Moreover, we also have to study ways of turning Markdown source files into
full HTML pages ready to be published on the website. We are not sure of how
we may do this, but the most sensible option right now seems to be creating
a custom script to automatically build the HTTML documentation from the
Markdown sources.

This task was entirely worked on by Rakhmatullo.

3.7.2 To Do

Just like the website, the documentation will be pushed and published during
the second period, as well as adapted to the state of SCFE, in order to not
document features that have not been implemented yet.

We might also consider publishing Viu API documentation to the website,
but we are not entirely sure about whether we want to do that or not, since
that would also mean releasing the sources of Viu, and extremely thorough
testing needs to be done before any kind of public release.

12

4 Intentions for the second defense

Now that we have detailed each task’s progression, we need to discuss the
overall progression of the project.

4.1 Current state

Right now, the project has a very solid basis, and the implementation of the
application can only be made easier down the line.

We have a fully working prototype (see figure 7) which handles key inputs
well, and shows accurate representations of folders (folder navigation being
limited, it only displays the current directory with no way of actually navigating
back and forth). The creation of the prototype was made satisfying by the
framework we created, with no major drawbacks in its implementation.

The current prototype also has a lot of gaps to be filled, in such a way that
we know exactly where to add new features. This means that development of
more advanced features should be relatively painless, or, at least, much easier
than the full creation of Viu.

4.2 Goal

One of our priorities for the second defense is to turn all of this ground work
into a usable product. We are on the right track, as the prototype was very
easy to create yet worked very well without the need to fiddle with low-level
code. As such, our efforts will especially be put towards making all of the
different tasks work together and unifying them under the application.

If we stay realistic, the application for the second presentation will be pretty
barebones, but fully functional. Polishing it and adding the hardest features to
code will be our primary goal between the second and final presentations. For
the mean time, we are focused on making it work.

The goals for each task have been described in the “To Do” section for each
task — please refer back to them for more details. They are all along the lines
of “improve and use in the main application”, refining each piece and adding
them to the general puzzle that SCFE is.

To recap, the main points we want to have covered for the second presenta-
tion are:

o Having a functional interface with working file navigation and actions,
o Completing the file implementation to get a good overview of the project,

13

« Fixing all bugs found in Viu in order to make it as robust as possible,
» Having a website and documentation which showcase the project and
allow users to download the resulting pre-release application.

We believe that, while challenging, fulfilling all of these goals will be feasible
for the following presentation.

We will have time restrictions for the second presentation, as it will come
very soon, the delay being even worse between the second and final presentations.
We will try to be as efficient as possible in order to not drown under work
before the final presentation. This is nothing out of the ordinary though and is
not that much of a threat for the project’s progression or integrity.

14

5 Personal appreciation

While the task description provided was rather neutral and did not express how
we felt about the project, as it was more about what was done rather than what
we think about what was done, the following section will express the personal
opinions of the members of Salamanders’ Lab.

5.1 Matthieu Stombellini

I am fairly happy with what was produced in this first period. I do wish that
task progression was a bit faster, and, unfortunately, I underestimated the huge
task that creating a console interface system would be, causing problems for
distributing other tasks to my teammates at first. We still managed to work
on the project successfully, and the result is there: a full toolkit that, while
remaining lightweight and usable, is quite complete and more than enough
for the tasks that still need to be done. I have had various very frustrating
problems with C# build systems during the first period, and ensuring that the
project could be built successfully every time was very painful due to various
bugs or surprising behaviors on Mono (which half of our team uses since they
are Mac users).

Problems for testing the code and very strange behavior of terminals on Mac
systems do make the whole development schedule slower than I wished it was,
but I am still determined to make this project as cross-platform compatible,
both for personal satisfaction and to actually be able to use this project in
machine rooms!

5.2 Mathieu Rivier

The beginning of the project has been quite productive for the team. We have
been able to build a solid basis for the app which will certainly facilitate the
implementation of later features and insure a great cross platform compatibility
from the ground up. For me, this project has been a great way to apply and
understand better the many principles that we study during TPs and see in
the TD classes, while learning many new things about development in general.
Furthermore the collision and great team spirit make of this project a great
learning experience and a unique opportunity for us to make something useful
at our humble level. I think that this project will bring to each of us some
extremely important lessons, that are: Team work and communication as
our own strengths might not always be adapted for a particular task when
someone’s else could be; responsibility as we all need to do our part in due
time in order for the project to advance at its normal pace and more. I really

15

enjoy working on the user input part of the project as it is what allows the
user to interact with the application. I am looking forward to start working on
the website that will provide our project a whole new level as it will finally be
online for the public to see and start interacting with (even though that might
mainly consist of the members of the group...). Overall I am very happy with
how the project is turning out to be and think that our project will truly be of
great use in our daily lives.

5.3 Francois Soulier

First of all, I am fairly impressed by the strength of the motivation we share
regarding the project, because there is a real interest on the creation and
realization of this project. Then, I would like to highlight the fact that the
group cohesion is also very strong, which very important in a project like
this, because reliability on each member of the group represents a big part of
efficiency. Regarding the project and the progress that we did, I see myself very
confident about it, especially concerning the schedule. Indeed, everything is
going as planed and see absolutely no reason why it shouldn’t be the case later
on. To go into further details, I really enjoy working on the file manipulation,
as it presents a real liberty about the methods that can be used. In addition, I
am looking forward to improving that part, in order to make it more flexible
and optimized. Nevertheless, I appreciate getting myself into the navigation
modes, meaning working closer to the visual and graphic interface — which
is actually the area where cohesion is the major factor since every member
is involved. On the whole, and regardless of our work efficiency, I am very
enthusiastic about the entirety of our project, because I find it a real coherence
and interest, both from a programming and an algorithmic point of view.

5.4 Rakhmatullo Rashidov

Throughout the first part of the project, I have been doing the documentation
using Markdown. To be honest, before starting, I did not know how to use
Markdown — However, right now, I am comfortable with it since I have finished
some part of the documentation using it. Although I did not have many
tasks to perform for this period, I checked the other parts of the code we are
implementing as I was very curious. All in all, I have been learning a lot. I
have always loved learning new things, especially, coding. I am happy that we
have made a lot of progress and I think our group is the best!

16

6 Conclusion

To conclude, we are all proud of the result of this first work period, and, while
the hardest part has been done for some tasks, we are well aware that this is
only the beginning. We will work as much as we can during this second period
to ensure the delivery of a light yet functional version of our application.

One of the most exciting aspects of this project is realizing that what we
have made will be useful, even outside of SCFE — the Viu system can be taken
as a prime example for something we will be able to re-use in personal projects
in the future. Thanks to our constant motivation of creating something useful,
we are able to give a new perspective to a project that would otherwise have
been forgotten past the second semester.

We are excited for the next evolutions of our project, as the second presen-
tation will be a perfect way of showing what we have learnt and showcasing
our take on how to create a modern, functional and simple console application.

17

7 Appendix

These images are related to the various tasks seen above and either showcase
features of Viu, or how Viu works internally, as well as showing the current
prototype for the SCFE application.

‘ﬁ Viu Demo (Border layout strategy) - [} X

This is at the top of the window!

with multip

is at the bottom of the window!

Figure 1: A simple Ul in a small form factor

‘ﬁ Viu Demo (Border layout strategy)
the top of the window!

This is at the bottom of the window!

Figure 2: The same Ul after the window is resized

18

Figure 4: The Table component if the window is larger than needed (columns
grow)

Figure 5: The Table component if the window is shorter than required (columns
shrink)

Input Map (customizable)

Component implementation Action Map (customizable)

Figure 6: Illustration of how InputMap and ActionMap work

19

'B'E C:/Users/matth/Desktop/S2/scfe/SCFE/SCFE/bin/Debug/SCFE.exe - O X

scfe\SCFE\SCFE\bin\Debug

Viu.exe
Viu.pdb

x | Welcome to SCFE!
Ctrl+Enter to start typing a command

Figure 7: Current prototype of the application

20

	Introduction
	Project subject reminder

	Book of Specifications follow-up
	Task progression
	Core UI
	Navigation modes
	File I/O
	User input
	Tool & OS integration
	Website
	Documentation

	Intentions for the second defense
	Current state
	Goal

	Personal appreciation
	Matthieu Stombellini
	Mathieu Rivier
	François Soulier
	Rakhmatullo Rashidov

	Conclusion
	Appendix

